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Millimeter-Wave Monolithic GaAs IMPATT VCO
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Abstract—A monolithic voltage-controlled oscillator (VCO) has been
constructed using a GaAs double-drift Read IMPATT as the active ele-
ment and a similar diode biased below breakdown as the varactor. The
chip produced 120 mW peak power over an electronically controlled
tuning range between 47 and 48 GHz. A computer analysis based on
characterized circuit parameters has been used to predict the perfor-
mance of the chip.

I. INTRODUCTION

ILLIMETER-WAVE voltage-controlled IMPATT

diode oscillators are useful in many applications.
Electronic frequency tuning is often achieved by varying
circuit reactance using a varactor diode. Because of dif-
fering design requirements, it is difficult to integrate two
types of devices in the same monolithic circuit [1]. How-
ever, the similarity of doping profile for hyperabrupt var-
actors and GaAs Read IMPATT diodes suggests an ap-
proach to the development of a monolithic varactor-tuned
oscillator [2]-[4].

In the present work, a double-drift Read IMPATT dop-
ing profile was used to test a monolithic VCO design. Al-
though double-drift IMPATT’s have a higher dc to RF
conversion efficiency than single-drift IMPATT s, the low
mobility of holes results in a high parasitic series resis-
tance and reduces the device Q when a double-drift IM-
PATT is used as a varactor. This effect will be seen in the
test data which follow.

II. VARACTOR CHARACTERISTICS

Fig. 1(a) shows the profile of the doping concentration
and the electric field within a single-drift Read IMPATT.
For the IMPATT diode, the spike determines the ava-
lanche zone and improves the dc to RF conversion. When
the diode is biased below its breakdown voltage, it can
also be used as a varactor [5].

At zero bias voltage, the depletion region is confined
within the charge spikes. As the reverse bias voltage in-
creases, the depletion width increases, resulting in de-
creasing capacitance. Parasitic series resistance results
from undepleted n-type material.

For a double-drift Read IMPATT profile as used in the
present experiments, additional parasitic series resistance
occurs in the varactor. The double-drift Read profile is
shown in Fig. 1(b). The junction lies between two doping
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Fig. 1. Doping profile and electric field within an IMPATT diode. (a) Sin-
gle-drift Read IMPATT. (b) Double-drift Read IMPATT.
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spikes, and drift zones extend into both the p and n IM-
PATT drift regions. The parasitic series resistance per mi-
cron of undepleted semiconductor is an order of magni-
tude greater for p material compared with n-type GaAs.
Typically, the total charge in the p spike is somewhat less
than that in the n spike. Therefore the p region is fully
depleted prior to the n region. We gain little advantage
from this since the capacitance is nearly saturated at the
p side punch-through voltage.

With the above factors duly noted, we selected a dou-
ble-drift doping profile which gave good dc to RF con-
version efficiency in the IMPATT mode and strong ca-
pacitance variation with minimum loss as a function of
applied varactor voltage.

IM1. Circuit DESIGN
The circuit design was based upon the monolithic IM-

PATT oscillator previously reported [6]. To incorporate’

the varactor into the oscillator, the following require-
ments were met: '

1) The varactor requires a separate dc bias voltage.
Therefore, except for a common ground, the IM-
PATT and the varactor must be dc isolated.

2) The varactor must be RF coupled to the oscillator.
Stronger coupling will give a greater frequency tun-
ing range, but parasitic series resistance in the var-
actor will load the oscillator, thereby reducing the
output powet. '

3) Device processing should be as simple as possible.
Thin film resistors and MIM capacitors, although
available, should be avoided.

A schematic drawing and photograph of a completed
chip are shown in Fig. 2. The diodes are connected in
shunt to the microstrip tuning elements by the air bridge
leads seen in the photo [6]. Fig. 3 is a cross-sectional
view. The diodes are positioned on a gold-plated via hole.

The oscillator incorporates an open-ended resonator
with a high impedance tap for RF output coupling. A ta-
per transforms the tap impedance from 90 to 50 Q. The
location and the impedance ratio between the tap and the
resonator line determine the output coupling.

The resonator is a section of 25 Q transmission line with
total length over one-quarter wavelength to provide an in-
ductive load impedance to the IMPATT. By means of the
tap, dc bias is provided to the IMPATT. The bias tee is
incorporated in the microstrip to waveguide transition so
that a monolithic bias circuit for the IMPATT can be
omitted in the present design.

A coupled line is used to establish the interaction be-
tween the IMPATT and the varactor. The varactor is con-
nected in shunt to another 25 Q microstrip line section,
which is located alongside the resonator (forming a cou-
pled line). The gap between the two lines is 10 pm. The
remaining circuitry provides the varactor bias. Near the
operation frequency, the bias circyit presents a high
impedance to the varactor, with little effect on the VCO
design.
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Fig. 3. Monolithic IMPATT diode structure.

An analysis of coupled lines appropriate to the present
case can be found in the literature [7]. Fig. 4 shows the
coupling structure. The input impedance can be expressed
by

zi

Zn = Zyy — ——2—
in 11 le+23
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where

Zy = R(V) + [juc(V)] "

Zoe + Zgo

Z“ =~0e2—0~coth'yl
Zoo = Zo,

Zl3 =—Oe—2—o‘csh‘yl.

Zy. and Zy, are the even- and odd-mode impedances of the
coupled line. The quantity v = « + jf is the complex
propagation constant, assumed to be the same for both
even and odd modes.

The highest sensitivity to varactor tuning occurs when
the coupled line length is about a quarter wavelength. In
that case, Z;; will be zero. Also, the stronger the cou-
pling, the larger Z; is.

The above discussion outlines the general features of
our design approach. Since the assumption of equal prop-
agation constants for both modes of coupled line is an
approximation, detailed design was conducted with the
aid of a computer. Measured circuit parameters [5] were
used in the analysis.

IV. EXPERIMENTAL RESULTS

The monolithic VCO was fabricated on a double-drift

Read profile GaAs IMPATT wafer. An AlGaAs stop etch
layer is incorporated for via hole processing [6]. The diode
mesa is defined first. The top contact is connected to the
microstrip line circuit through an air bridge. Then the sub-
strate is lapped to 100 pm. The via hole is opened by dry
etching, which stops at the AlGaAs layer. A metal layer
is plated over the entire back side to form the ground plane
of the microstrip line. The via hole, which is the path for
both electric signal and heat, is partially filled by gold
plating. The chip measures 2 mm X 1.3 mm.
- RF testing is done with a finline transition between
WR-22 waveguide and microstrip line. The bias tee func-
tion is included in the transition, providing bias to the
IMPATT diode. The insertion loss of the transition is in
the range 0.5-0.8 dB over the entire waveguide band. Fig.
5 is a picture of the transitions.

The VCO was tested in pulse operation using a pulse
width of 300 ns and a duty cycle of 6 percent. Fig. 6is a
typical result, showing the operation frequency and the
output power as a function of the varactor bias voltage.
A 1 GHz tuning range was achieved. The power dropped
monotonically as the varactor bias voltage declined. Be-
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Fig. 5. Photograph of the waveguide (WR-22) to microstrip line transi-
tions.
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Fig. 6. Operation frequency and output power versus the varactor bias
voltage.

low 3.5 V oscillation is no longer obtained. This phenom-
enon strongly suggests that the series resistance of the
varactor diode provides excessive loading to the IMPATT
diode.

This conclusion is supported by the measured perfor-
mance of a monolithic IMPATT oscillator [6] incorporat-
ing no varactor circuit and coupled line. The IMPATT
diode size was equal to that used in the VCO. The mon-
olithic IMPATT gave output power much higher than the
VCO. Under the same test condition, 500 mW peak power
at 6 percent duty cycle was obtained. Conversion effi-
ciency was 11 percent. All the measured results are re-
ferred to the output port of the circuit chip. The insertion
loss of the finline transition is accounted for. The much
higher output power from the monolithic IMPATT sug-
gests that the VCO circuit has a much lower circuit effi-
ciency. It is hypothesized that the extra loss comes from
the varactor circuitry.
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V. ANALYSIS

In order to better understand the VCO circuit, charac-
terized circuit parameters were used in the computer anal-
ysis. The capacitance of the varactor diode was measured
as a function of voltage. The doping profile of the device
was determined by the capacitance-voltage method. The
zero bias series resistance was calculated approximately
based on the doping profile. The p drift region is 0.3 ym
and is doped to 3.5 X 10'®. The n region is 0.35 pm and
is doped to 2.5 X 10'. The resistance from these two
regions is about 14.5 Q. The metal contact resistance is
1.5 Q.

Measured capacitance values (C(V)) and a voltage-
dependent series resistance R (V') were used as input for
computer analysis. The relationship between R, and volt-

age is assumed to be
C
0 4.
c(v)

where R, is the zero bias series resistance; its value is 16
Q. G, is the zero bias capacitance. The factor of 5 is the
ratio of the total device length to the avalanche zone
length, as measured by C-V profiling. This equation as-
sumes that the depletion region extends equally into p and
n drift regions at all the bias voltage. Since C (V) is mea-
sured, R.(V') can be calculated accordingly.

These data are inputted into a SUPERCOMPACT pro-
gram. The coupled line model in SUPERCOMPACT is
also modified to give a better fit to the characterized result
[5]. The program calculates the resonance frequency, the
circuit efficiency, and the load conductance presented to
the IMPATT device.

RS(V) = R_SO X 5 -

A. Operation Frequency

Fig. 7 shows the measured oscillation frequency of a
VCO for two bias current levels of one IMPATT diode,
together with a computer-calculated resonance frequency,
as a function of the varactor bias voltage. The agreement
between the computer analysis and the experiment is ex-
cellent. Below 4 V bias on the varactor, no oscillation can
be observed from the VCO. However, the resonance fre-
quency can still be predicted by the computer.

Below 4 V bias voltage on the varactor, the resonance
frequency as predicted by the computer becomes fixed. It
is caused by the large series resistance of the varactor.
Fig. 8 illustrates the effect of series resistance in the model
calculation. One curve is the simulation of the experi-
ment, as in Figure 7. The other is the prediction of the
model under the assumption of one tenth the series resis-
tance. This value of series resistance would be typical of
a single-drift device where only n-type GaAs is used. The
tuning range for the small resistance case is 2.87 GHz.

Also shown in Fig. 8 is the measured varactor capaci-
tance at room temperature. The capacitance ratio is only
3, smalier than the maximum available ratio of 5 at high
temperature. The undepleted drift region in the varactor
is the major source of series resistance.
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Fig. 8. Calculated resonance frequency with different series resistance
values and the measured varactor capacitance as a function of bias volt-
age.

B. Load Conductance and Circuit Efficiency

Plotted in Fig. 9 is the load conductance for the two
values of series resistance. The low varactor resistance
case shows the much lower conductance which would re-
sult in oscillator output throughout the entire varactor bias
range.

Another important parameter is the circuit efficiency. It
is defined as the ratio of the circuit output power to the
device-generated power. For a lossless resonator, this
number is 100 percent. The circuit efficiency of the VCO
was calculated. It is only about 20 percent at 13 V var-
actor bias. At lower varactor bias voltage (larger series
resistance), the circuit efficiency is even lower. The mea-
sured circuit efficiency [S] for the monolithic IMPATT
chip is much higher, 80 percent. The reduction of the cir-
cuit efficiency is caused by both the varactor series resis-
tance and the coupled line structure.

The ratio of the output power of the VCO to that of the
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Fig. 9. Calculated load conductance at two different series resistance val-
ues.

monolithic oscillator is about the same as the ratio of the
calculated VCO circuit efficiency to the measured oscil-
lator efficiency. The measurements imply that the IM-
PATT diodes in both circuits are well matched. The load
impedance versus frequency curve is smooth and has no
parasitic resonance loop. A loop in the load impedance
curve often causes hysteresis in frequency tuning or the
failure of oscillation.

Therefore, the large series resistance of the varactor
limits the VCO performance in two ways:

1) It reduces the resonance frequency tuning range as
~ shown in Fig. 8.
2) At low varactor bias voltage, the oscillator is so
heavily loaded that no oscillation can take place.

A reduction of the varactor series resistance will greatly
enhance the VCO performance.

VI. CONCLUSION

A monolithic Q-band GaAs IMPATT diode voltage-
controlled oscillator has been built and. tested. A fre-
quency tuning range from 47 to 48 GHz was achieved
with 120 mW peak power. A monolithic IMPATT omit-
ting the varactor circuitry generated 500 mW peak power
at 11 percent efliciency. Computer predictions based on
measured circuit parameters accurately predict the oper-
ation frequency. It is concluded that the key limiting fac-
tor in the power and tuning range is the presence of a large
parasitic series resistance in the varactor. By utilizing a
single-drift doping profile, improved performance can be
expected. '
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